If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+110x-210=0
a = 20; b = 110; c = -210;
Δ = b2-4ac
Δ = 1102-4·20·(-210)
Δ = 28900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28900}=170$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-170}{2*20}=\frac{-280}{40} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+170}{2*20}=\frac{60}{40} =1+1/2 $
| 2x+3(x-(1))=17 | | 8+3x+7=68 | | 3(x-1)=3-3x | | -8n-11n+15n=20 | | 3x-2=4.75 | | 12b+10b=1 | | 5z-66=2z | | 24x+6=34 | | -4n+21=-43 | | -2x+2=x+8 | | 8k+7-3=5+8k | | (4x+5)=(3x+7) | | 2z-27=z | | 3x-8(x-3)=-x+4(-5x+2) | | -84=7(4-2p) | | 10x+6+34+4x=180 | | 9g-7g+g-g=14 | | 270-9x=18x | | 2u-72=u | | 5f=9(1064)+160 | | Y-42+y=180 | | 1/2(t+3)-10=-6.4 | | 58=2-7r | | 4x-2+3x=-8+2x+2x | | -114+2x-126=300 | | k-9=36 | | 270-9x=18 | | (x/4)*4=-1,5*4 | | n+49=82 | | 3p-80=p | | g-14=83 | | 2(6z-2)=0 |